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Numerical simulation of shock waves interacting with multimaterial interface is immensely challenging,

particularlywhen the embedded interface is retained as a sharp entity. The challenge lies in accurately capturing and

representing the interface dynamics and the wave patterns at the interface. In this regard, the ghost fluidmethod has

been successfully used to capture the interface conditions for bothfluid–fluid and solid–fluid interfaces. However, the

ghost fluid method results in over/underheating errors when shocks impact interfaces, and hence must be

supplemented with numerical corrective measures to mitigate these errors. Such corrections typically fail for strong

shock applications. Variants and extensions of the ghostfluidmethodhave been proposed to remedy its shortcomings

with mixed success. In this paper, the performance of approaches based on the ghost fluid method, in the case of

strong shocks impinging on immersed solid boundaries in compressible flows, is evaluated. It is found that (from the

viewpoint of simplicity, robustness, and accuracy) a reflective boundary condition used in conjunction with a local

Riemann solver at the interface proves to be a good choice. Themethod is found to be stable, accurate, and robust for

wide range problems involving strong shocks interacting with embedded solid objects.

I. Introduction

T HE interaction of shocks with multimaterial interfaces is
important in several applications, including high-speed flows

with droplets [1], bubbles, and particles [2,3], hypervelocity impact
and penetration [4], and detonation diffraction [5,6]. In such pro-
blems, simulations encounter challenges associated with the treat-
ment of material interfaces, particularly when shocks and detonation
waves impinge upon them. The result of such shock-interface
interactions may be partial reflections, refractions or transmission of
the shocks, and the motion of the material interfaces under the
influence of the shocked fields [7]. These motions can be large and
may also lead to topological changes, such as shattering, recon-
nection, collapse, etc.

Recently, the use of embedded boundary methods for the repre-
sentation of solid boundaries in incompressible [8–11] and
compressible [4,12–16] flows has become popular. These methods
are attractive for the treatment of moving boundaries in the flow
domain because the complex process of grid generation and
management can be dispensed with. Particularly, the ghost fluid
method (GFM) [12] provides a simple framework to implicitly
transmit the presence of an embedded interface to theflowfield.GFM
requires the definition of a band of ghost points on either side of the
interface, corresponding to each phase of the interacting media. The
band of ghost fluid, when populated with suitable flow properties,
together with the respective real fluid constitutes a continuous
flowfield in which a single equation of state can be employed. Thus,
discretization schemeswith uniform order of accuracy can be applied
throughout the computational domain without requiring any special
treatment near the interface. The implementation of the numerical
scheme and the interface treatment are decoupled, and the onus is
shifted to populating the ghost points with physically consistent
values.

When applied to shock interactions with stationary or moving
solid objects embedded in compressible flows, the GFM was found

to suffer from acute over/underheating numerical errors [14,17]. The
GFM coupled with an isobaric fix proposed by Fedkiw et al. [12],
although successful in handling solid–fluid interfaces for a limited
range of shock strengths, failed for strong shocks interacting with a
fluid–fluid interface. It was found that the failure of GFM to
accurately resolve the interface could be alleviated by populating the
ghost points by solving a local Riemann problem normal to the
interface [14]. This was later adopted by several researchers, both in
the GFM and non-GFM framework [14,18–22]. However, these
methods were mostly developed to treat fluid–fluid interfaces, and
hence it is not clear how one could extend such methods to represent
embedded solid objects. A variant of the GFM, the characteristic-
based matching (CBM) method proposed by Nourgaliev et al. [15],
was found to be effective in reducing the shock-interface interaction
errors significantly. In the present work, a unified formulation to treat
both solid–fluid and fluid–fluid interfaces is presented.

Briefly, a simple reflective boundary condition (RBC) method is
used to populate the ghost points and the resulting heating errors are
corrected by augmenting the solutions by solving aRiemannproblem
between the real field and the reflected ghost field. The Riemann
problem constructed normal to the interface is solved using an exact
Riemann solver, and the resultingRiemann states are used topopulate
the ghost points. This approach of solving a Riemann problem is
simpler to implement than the CBMapproach and is also shown later
to be computationally less expensive. The Riemann-solver-based
interface treatment technique to represent embedded fluid–fluid
interfaces is discussed in a separatework [23], and this paper focuses
on extending this technique to treat the presence of solid objects in
compressible flows. As demonstrated in the results from the current
simulations, the proposed method is found to yield satisfactory solu-
tions for several complex configurations and shock diffraction
phenomena. Shocks interacting with multiple particles and complex
shapeshavebeencomputed, and themethod iscurrentlybeingapplied
to study the dynamics of dense particulate compressible flows.

II. Governing Equations

The governing equations comprise a set of hyperbolic conser-
vation laws. In Cartesian coordinates, the governing equations in
two-dimensions take the following form:

@U

@t
� @F
@x
� @G
@y
� S (1)

where

Received 9 January 2009; revision received 20 July 2009; accepted for
publication 17 August 2009. Copyright © 2009 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0001-1452/09 and $10.00 in
correspondence with the CCC.

∗Graduate Student, Department ofMechanical and Industrial Engineering;
ssambasi@engineering.uiowa.edu. Student Member AIAA.

†Professor, Department of Mechanical and Industrial Engineering; ush@
engineering.uiowa.edu. Member AIAA (Corresponding Author).

AIAA JOURNAL
Vol. 47, No. 12, December 2009

2923

http://dx.doi.org/10.2514/1.43153


U �

�
�u
�v
�E

0
BB@

1
CCA; F�

�u
�u2 � p
�uv

u��E� p�

2
664

3
775; G�

�v
�uv

�v2 � p
v��E� p�

2
664

3
775

where E� e� 1
2
�u2 � v2� is the total internal energy and e is

specific internal energy. For the purely inviscid flows of interest here,
the source term S in Cartesian coordinates is set to zero. Extension of
the solution methodology to Navier–Stokes equations is straight-
forward. Closure for the preceding set of governing equations is
obtained by using a stiffened equation of state [24,25],

P� �e�� � 1� � �P1 (2)

where � is the specific heat ratio (also called a Grüneisen exponent
[1] for stiff fluids) and P1 is a material-dependent constant [26]. For
the case of ideal gas, we have � � cp

cv
andP1 � 0. For stiff fluids like

water, the Grüneisen exponent and the material-dependent constant
take the value of 5.5 and 0.613GPa, respectively. From the definition
of sound speed, we have

c2 �
�
@P

@�

�
s�constant

(3)

Using Eq. (2), the speed of sound then becomes
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III. Sharp Interface Treatment Methods

A. Implicit Interface Representation Using Level Sets

Sharp interface treatment methods require continuous tracking
and representation of the interface. In this work, level sets introduced
by Osher and Sethian [27] are used to represent the embedded
interface. The level set field is advected using the level set advection
equation [28,29]:

@�l
@t
� Vl � r �l � 0 (5)

where �l andVl denote the level set and the level set velocity field for
the lth embedded surface. A fourth-order essentially nonoscillatory
(ENO) scheme for spatial discretization and a fourth-order Runge–
Kutta (RK) time integration are used in solving the level set advection
equation. The normal vector and the curvature at the interface can be
computed from the level set field according to

n l �
r �l
kr �lk

(6)

���r � n (7)

For other relevant details regarding the implementation of level set
methods, the reader is referred to the original literature [27,30].

B. Boundary Conditions

The tracked interface has to be coupled with the flow solver such
that the jump in the mass, momentum, and energy fluxes (along with
the material properties across the interface) are depicted accurately.
In the GFM approach, this translates to suitably populating the ghost
points. However, there is a significant difference between the treat-
ments of fluid–fluid and solid–fluid interfaces in the GFM frame-
work. In the case of fluid–fluid interfaces, the flow variables (such as
velocity and pressure) that are continuous across the interface are
injected into the ghost field directly. In the latter case, due to the
absence of flowfields on one side of the interface (the solid side), it is
not immediately clear how to populate the ghost points with the
virtual flow properties.

At the interface of a solid body immersed in compressible flows,
the following boundary conditions are to be applied for velocity,
temperature, and pressure fields:

No-penetration condition for the normal velocity

vn �Un (8)

whereUn is the velocity of the center of mass of the embedded rigid
object.

Slip condition for the tangential velocity

@vt1
@n
� 0 (9)

@vt2
@n
� 0 (10)

Adiabatic condition for temperature

@T

@n
� 0 (11)

Normal force balance on pressure
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where

vn � V � n̂ (13)

vt1 � V � t̂1 (14)

vt2 � V � t̂2 (15)

are the normal and (contravariant) tangential velocities in the local
body-fitted curvilinear coordinate; V is the velocity vector in the
global Cartesian coordinate; n̂, t̂1, and t̂2 are the normal and tan-
gential vectors;R is the radius of curvature; and an is the acceleration
of the interface.

In case of the Navier–Stokes equations, the slip condition is
replaced by the no-slip condition at the interface. The set of boundary
conditions (8–12) govern the behavior of the flow near the embedded
solid body and must be enforced on the real fluid by suitably
populating the ghost points. As outlined in this section, there are
several approaches for applying these boundary conditions within
the spirit of theGFM.However, as will be demonstrated in the results
section of this paper, not all of them are successful in computing
shock-interface interactions in a robust fashion.

C. Boundary Condition Type 1: Reflective Boundary Condition

The RBC approach is widely adopted to depict the presence of a
rigid body in the fluid [5,31–34]. RBC, as the name indicates, reflects
the real flowfields across the interface. In the GFM framework, the
fields from the realfluid are reflected onto the ghost points in the solid
phase. The reflection operation is carried out such that the boundary
conditions (8–12) are enforced exactly at the interface. Because the
boundary conditions involve the flow properties in the normal and
tangential directions, the reflection process must be carried out in the
local body-fitted curvilinear coordinates (vn, vt1 , and vt2 ) instead of
the global Cartesian coordinates (u, v, and w).

To carry out the reflection process accurately, the reflected point on
the real fluid side for each interfacial ghost point on the solid phase
must be determined. As shown in Fig. 1, the reflected point IP1 on the
real fluid side, corresponding to ghost point P, can be obtained by
inserting a probe through pointP. IP is the point of intersection of the
probe with the interface. The absolute value of the level set function
j �P j gives the normal distance of point P from the interface. This
value �P can then be used tomarch into the real fluid to determine the
coordinates of the reflected point IP1:
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X IP1 �XP � 2 j �P j NP (16)

The flow properties at the reflected point can be obtained using a
regular bilinear interpolation from the surrounding computational
points, as shown in Fig. 1. It must be noted that one or more of these
neighboring computational points may lie inside the solid, in which
case the corresponding ghost fluid properties are used in the inter-
polation procedure. Once the flow properties at the reflected point are
determined, it is straightforward to reflect the flow properties on to
point P.

1. Embedding Boundary Conditions with the Interpolation Procedure

Sometimes, an interfacial ghost point, like point P in Fig. 2, may
lie very close to the interface. In such cases, using a direct bilinear
interpolation procedure will involve the (as yet unknown) ghost
point. To avoid interpolating from the ghost point in consideration,
the procedure discussed by Ye et al. [35] is employed as follows.

For any reflected point IP1, the surrounding interpolating points 1,
2, 3, and P are determined. If point P corresponds to the interfacial
ghost point for which the flow properties of the reflected point are to
be determined, then point P should not be used in the interpolation
procedure. Instead point 4 (or IP) on the interface can be used, for
which either the value of the flow variables (Dirichlet conditions) or
the flow gradient (Neumann-type conditions) is available. Thus, it is
necessary to embed the appropriate boundary conditions to complete
the interpolation procedure. Accordingly, the value of the flow
variables at the reflected point IP1 can be obtained using a bilinear
interpolation of the form:

 � a1 � a2x� a3y� a4xy (17)

where �x; y� are the coordinates of the reflected point IP1 and  
corresponds to the flow variables. To determine the coefficients
a1 � a4, Eq. (17) is applied to the surrounding points chosen for the
interpolation procedure. Hence, for Dirichlet type boundary condi-
tions, Eq. (17) reduces to
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and for Neumann-type conditions, we have
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The last row of the coefficient matrix in Eq. (19) is obtained by
differentiating Eq. (17), noting that

@ 

@n
� @ 
@x
nx �

@ 

@y
ny (20)

where nx and ny are the components of the normal vector at point P,
and S4 corresponds to the value of the normal gradient at the
interface. After determining the coefficients, the flow properties at
the reflected point can be determined using Eq. (17).

2. Determining the Flow Properties at the Interfacial Ghost Points

Once the flow properties at the reflected point IP1 are determined,
the next step is to incorporate the boundary conditions (8–12) at the
interface. In the RBC framework, the boundary conditions take the
following form.

The no-penetration condition is satisfied by reflecting the normal
velocity, as given by

vnP � 2UnIP � vnIP1 (21)

whereUnIP is the velocity of the center of mass of the solid body. For
the tangential velocities, Eq. (9)must be satisfied at the interface. The
Neumann condition for the tangential velocities in the RBC
framework then becomes

vt1P � 2Ut1IP � vt1IP1 (22)

vt2P � 2Ut2IP � vt2IP1 (23)

where, for slip

Ut1IP � vt1IP1 (24)

Ut2IP � vt2IP1 (25)

and for no slip

Ut1IP � 0 (26)

Ut2IP � 0 (27)

where Ut1IP and Ut2IP are the tangential velocities at IP. Along the

same lines, the pressure field can be obtained from Eq. (12),

PP � PIP1 �
�
�pv

2
t1P

RP
� �panP

�
2 j �P j (28)

where anP is the acceleration of the solid. The density �p used in
Eq. (28), is obtained by reflecting the value at IP1; that is,

Fig. 1 Illustration of grid points used in RBC.

Fig. 2 Embedding the boundary conditions with the interpolation

procedure.
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�P � �IP1 (29)

Once the flowproperties corresponding to the interfacial ghost points
in the solid phase are determined, these properties are then extended
to populate the interior ghost points using a suitable multidimen-
sional extrapolation procedure. Linear and other higher-order extra-
polation procedures have been discussed byAslam in [36]. However,
the numerical experiments carried out in this work indicate that the
order of the extrapolation procedure has little or no significant
influence over the accuracy of the solution, and hence a simple
constant extrapolation procedure was found to be sufficient for the
problems attempted in this paper. With the reflected ghost field, the
problem is reduced effectively to a singlefluid (realfluid–ghostfluid)
problem, which can be solved with known (fluid–fluid) interface
treatment techniques.

3. Correction for Over/Underheating Problems

The reflection of strong shocks from moving or stationary walls
can cause numerical artifacts, such as excessive over/underheating
errors [37,38]. Donat and Marquina [39] developed a flux splitting
scheme that had a built-in mechanism to dissipate the excessive heat
generated at the wall. Fedkiw et al. [17] proposed an isobaric fix,
which was a simple extrapolation of entropy from the real fluid side
onto the corresponding ghostfield, to suppress the over/underheating
errors.

Several interface treatment techniques developed in the past
[12,15–17] were prone to these heating errors, and RBC is no
exception. Asmentioned previously, with RBC, the solid–fluid inter-
face is converted to a relatively simple (real) fluid–(ghost) fluid
interface problem. The interaction between the real and the corres-
ponding ghost fields resulted in strong shock or rarefaction waves or
both, which travel into the real and ghost fields. The problem
becomes accentuated for a strong shock impacting the interface due
to the following three reasons.

1) The RBC approach employs a bilinear interpolation procedure
to obtain the flow properties at the reflected point. Using any form of
interpolation technique across strong discontinuities will result in
interpolation errors. These errors, although generated locally near
the interface, accrue over time and afflict the solution away from the
interface. It is important to point out that the errors arising from the
interpolation procedure can be significantly reduced by employing a
lower-/higher-order MUSCL [40]/ENO-based [41] adaptive poly-
nomial interpolation procedure. However, such schemes require
wider stencils and gradient evaluation, which becomes complicated
to compute and computationally expensive, particularly when the
mesh becomes highly unstructured [i.e., when additional mesh
enrichment techniques like adaptivemesh refinement (AMR) [42] or
tree-based local mesh refinement [43] is employed].

2) The errors arising from shock-interface interaction phenomena
contribute significantly to the over-/underheating errors.

3) The characteristic analysis of the governing hyperbolic equa-
tions (1) dictates that the variables corresponding to incoming
characteristic waves must be supplied with flow conditions inde-
pendent of the flowfield, and the variables corresponding to the
outgoing characteristic waves must be evolved in time (based on the
flow properties within the computational domain [15,16]). Because
the RBC approach does not conform to the restriction imposed by the
characteristic waves at the interface (except for supersonic inflow
condition), it results in over/underspecification of the boundary
conditions, which in turn causes spurious waves to enter the compu-
tational domain.

The isobaric fix [17] was one approach to annihilate the growth of
over/underheating shock interaction errors. However, it was
established in Liu et al. [14] that the isobaric fix does not perform
adequately for strong shocks interacting with a fluid–fluid interface.
Furthermore, it was shown that the most effective way of dyn-
amically correcting such errors is to accurately resolve the wave
interactions occurring at the interface [14]. To this effect, a Riemann
problem was solved locally, normal to the interface [14,21], to
decompose the singularities inwave patterns andmaterial properties.

The same methodology could be extended to correct the heating
errors arising due to shocks interacting with the solid–fluid inter-
faces. Moreover, the Riemann solver constructed locally at the
interface essentially solves the mass, momentum, and energy bal-
ances at the interface (Rankine–Hugoniot jump conditions) and
implicitly adheres to the nature of the waves arriving/leaving the
interface. Hence, the Riemann states obtained from the Riemann
solver are devoid of shock interaction errors and could be used to
mitigate the growth of such errors.

4. Constructing the Riemann Problem at the Interface

In this section, a brief discussion on the procedure to construct the
Riemann problem at the interface is outlined. From each interfacial
ghost point, such as pointP in Fig. 3, a probe is inserted in the normal
direction to find the nearest point of intersection on the interface
(point IP in Fig. 3). The coordinates of the point IP on the interface are
given by

X IP �XP� j �P j NP (30)

The left and the right states required for assembling the Riemann
problem are obtained by advancing a distance of 1:5�x on either side
from IP. The coordinates of the points corresponding to the left and
right states are given by

X L �XIP � 1:5�xNP (31)

X R �XIP � 1:5�xNP (32)

Once the coordinates of the left and the right states are determined,
the flow properties at these points can be obtained using a simple
bilinear interpolation procedure, as shown in Fig. 3. The Riemann
problem is solved and the Riemann (intermediate �) states obtained
from the Riemann solver are then used to correct the flow properties
at the ghost point P:

�P � ��L (33)

vnP � v�nL (34)

PP � P�L (35)

Once the flow properties at the interfacial ghost points are
determined, the flowfield corresponding to the interior ghost points
(located inside the solid) can be obtained by extending the
flow properties, using a suitable multidimensional extrapolation
procedure [36].

D. Boundary Condition Type 2: Simple Boundary Condition

The simple boundary condition (SBC) approach is the most direct
way to enforce the boundary conditions (8–12) accurately at the

Fig. 3 Procedure to construct the Riemann problem at the interface.
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interface. This is a simple extension of the approach discussed in
Marella et al. [8], for which amethodologywas developed to treat the
presence of embedded objects in an incompressible flow. A version
of this approachwas also discussed byArienti et al. [31].As shown in
Fig. 4, a probe is inserted through each interfacial ghost pointP in the
solid phase. Coordinates of IP, the point of intersection of the probe
with the interface, are determined from Eq. (30). Along the same
lines, the coordinates of points IP1 and IP2 are determined as follows:

X IP1 �XIP ��xNP (36)

X IP2 �XIP � 2�xNP (37)

Flow properties at points IP1 and IP2 are obtained using bilinear
interpolation from the surrounding computational points. The nor-
mal derivatives required in Eqs. (8–12) can now be easily computed
as

@ 

@n
�  IP � 4 IP1 �  IP2

3�x
(38)

where  corresponds to temperature T, tangential velocities vt1 and
vt2 , or pressure P. The density at the interface can be obtained from
the equation of state. The velocity of the center of mass is specified as
the normal velocity at the point IP. After determining the flow
properties at the interface, the values are extended to define the ghost
field in the solid phase.

It is important to note that this method suffers from severe over/
underheating errors. In particular, these errors are amplified during
the transient shock-interface interaction process. Evaluation of
derivatives with the use of probes, especially during the initial
stages of the shock interaction with the interface, result in severe
interpolation errors. If these startup errors are left uncorrected, they
are fed back into the real fluid through the ghost field. It is found
that these errors cannot be corrected by augmenting this approach
with a local Riemann solver. This is because, populating the ghost
points with SBC results in an abrupt change in flow properties.
Employing a Riemann solver would yield intermediate states that,
together with the real fluid, would not satisfy the boundary
conditions (8–12) at the interface. Therefore, for strong shock
interactions with the embedded solid boundaries, the SBC approach
is ill-advised.

E. Boundary Condition Type 3: Simple Boundary Condition

Using Coordinate Transformation

Another method for treating the presence of embedded solid
bodies is to use the coordinate transformation (CT)/rotation tech-
nique [15,16]. In this method, the discretization of Eqs. (8–12) is
carried out in global Cartesian coordinates for each interfacial
ghost point in the solid phase and then transformed to the local
(body-fitted) curvilinear coordinates by means of a suitable trans-
formation matrix. Thus, the normal and tangential derivatives can
be computed as follows:

@ 
@n
@ 
@t1
@ 
@t2

0
B@

1
CA� J

@ 
@x
@ 
@y
@ 
@z

0
B@

1
CA (39)

J �
nx ny nz
t1x t1y t1z
t2x t2y t2z

0
@

1
A (40)

whereJ is the Jacobianmatrix, and the unit vectors n̂, t̂1, and t̂2 are the
normal and tangential vectors computed from the level set field
[15,16,44]. This method minimizes interpolation across the

Fig. 4 SBC procedure: evaluating the normal derivatives at the
interface.

Fig. 5 Configuration of a rotating shock tube embedded in the

computational domain.
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Fig. 6 Plots of density along the centerline of the shock tube placed at different orientations.
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discontinuity and hence localizes the over/underheating errors to few
points close to the interface. Although this method appears to be very
simple and robust, there is a slight smearing of the interface due to the
following reason: Eqs. (8–12) are valid at the interface, and hence the
normal and tangential derivatives must be evaluated at the interface
itself. Evaluating the derivatives at the interfacial ghost points results
in diffusing the interface over few grid points, and hence using

Eq. (39) would not ensure the application of boundary conditions
strictly at the interface.

F. Boundary Condition Type 4: Characteristic-Based

Matching [15,16]

Another promising approach to treat the presence of embedded
objects in compressible flows is to use the characteristic wave
analysis at the interface [15,16,45]. As the governing equations are a
set of hyperbolic conservation laws, Eq. (1) can be recast in
characteristic form using a suitable transformation matrix. The sign
of the eigenvalues determines whether the waves are incoming or
outgoing and hence the direction of propagation of information. The
incoming waves carry information into the flowfield and hence
correspond to the physical boundary conditions that need to be
supplied independent of the flowfield. The outgoing waves carry
information from within the flowfield and hence correspond to the
numerical boundary conditions (obtained via extrapolation) that
need to computed from within the flowfield. The characteristic
analysiswas carried out byThomson [45] for the domain boundaries.
Nourgaliev et al. [15,16] extended this approach to populate the ghost
points in the GFM framework. Thus, with the characteristic wave
analysis, the ghost points are always supplied with physically
consistent flow values. In addition, the characteristic wave analysis
prevents over/underspecification of boundary conditions that, in
turn, inhibits spurious disturbances from entering the flowfield [45].
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Fig. 7 Configuration of a rotating shock tube embedded in the

computational domain.
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For additional details pertaining to themathematical background and
implementation of the CBM approach, the reader may refer to
Nourgaliev et al. [15,16].

G. Other Methods

Other methods for applying interface conditions on embedded
solid boundaries have been discussed at length by Arienti et al. [31].
The methods include the mirroring technique, the reflection
method, and the direct injection method. In the mirroring technique
[33], the flow properties on the real fluid side are mirrored onto the
ghost fluid by multiplying with a suitable rotation/reflection matrix.
The reflection method discussed in Arienti et al. [31] simply extends
the flow properties at the real fluid interfacial nodes but with an
inverted sign of the normal velocity to satisfy the no-penetration
boundary condition. The injection method formulated by Arienti
et al. [31] is a variation of SBC. In this approach, flow variables at
the real fluid interfacial points are extended to the ghost points, but
now the normal velocity is set to zero, preserving the tangential
velocities to depict the slip condition at the interface. These
methods are mentioned here only for the sake of completeness and
will not be considered in the numerical examples to be discussed in
the next section.

IV. Numerical Examples

In this section, several numerical examples will be shown to
evaluate the performance of the interface treatment methods outlined
in the previous section. In the numerical examples shown here, the
Euler equations (1) were solved using a third-order total-variation-
diminishing-based RK scheme for time integration and a third-order
convex ENO scheme [46] for spatial discretization. Details per-
taining to the implementation of the convex ENO scheme can be
found in Liu et al. [46]. Unless otherwise specified, a Courant–
Friedrichs–Lewy number of 0.6 was used in the simulations per-
formed. Numerical Schlieren images shown in this section were
generated using the method outlined by Quirk and Karni [3].

A. One-Dimensional Examples

The one-dimensional examples shown here demonstrate the
performance of various (interface treatment) methods in handling
regular shock reflections. It is found that the choiceofmethod impacts
significantly on the accuracy and stability of the computations.

1. Rotated Shock Tube

A variant of the one-dimensional shock tube problem demon-
strated by Nourgaliev et al. [16] is considered first. As shown in

Fig. 9 Snapshots of the numerical Schlieren image of a Mach 1.3 shock diffracting a wedge.
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Fig. 5, thewalls of the shock tube are embedded in the computational
domain by defining a suitable level set field. The shock tube is
oriented at an angle to the regular Cartesian mesh so that a two-
dimensional problem is solved, but the problem is one-dimensional
along the centerline of the shock tube. The discontinuity at t� 0 is at
the center of the shock tube. The shock tube is placed at different
orientations relative to the grid lines. Rotation angles corresponding
to �rot � 30 deg, �rot � 45 deg, and �rot � 60 deg (with respect to
the horizontal) have been considered. The size of the computational
domain is 2 � 2 units. The length and the height of the shock tube
were chosen to be 1.5 and 1.0 units, respectively. The simulations
were carried out to T � 0:164. The results obtained from the current
simulations are shown in Fig. 6. RBC augmented with local
Riemann solver (henceforth RBC–RS), SBC, and CBM approaches
were used to simulate this problem. Figure 6 shows good agreement
between these methods, and with the exact solution, in capturing the
shock and the contact discontinuity. The simulations were stopped to
prevent the shock from reflecting off the wall, so that the resulting
numerical solution could be compared with the exact solution.

2. Woodward Colella (Bang–Bang) Problem

Unlike the previous case, this example involves strong shock
reflections and shock collisions. The initial conditions along with the
geometrical setup are given in Fig. 7. As in the previous example, the
shock tube is placed at different orientations (�rot � 30 deg and
�rot � 60 deg) so that the problem is not strictly one-dimensional
and the impact of the interface treatment andmesh orientation can be
examined. The simulations were run to timeT � 0:038 units, and the
plots of density, pressure, and entropy along the centerline of the
shock tube are displayed in Fig. 8. Note that the SBC, unable to

suppress the initial transient shock development errors, failed in the
first few times steps of the shock reflection process.

From the entropy plots displayed in Figs. 8e and 8f, it is evident
that RBC suffers from extensive overheating errors that appear to be
problem dependent (over/underheating errors were not observed in
the previous example). Clearly, the overheating errors associated
with the RBC cannot be neglected and hence must be corrected in
order to obtain better solutions in the presence of strong shocks. On
the other hand, the RBC–RS shows no significant over/underheating
errors. Both CBMand the SBC–CT produce underheating errors that
are small. This example clearly illustrates the requirement of an
additional correction procedure to suppress the errors associated
with shock-interface interactions. Thus, it is clear from the one-
dimensional examples presented in this section that the SBC ap-
proach suffered from severe over/underheating errors that had
catastrophic consequences in the final outcome of the solution. The
RBC approach incurred over/underheating errors that were problem
dependent. In contrast, the RBC–RS and CBM methods resulted in
lower levels of over/underheating errors and were consistent in
predicting satisfactory solutions. This clearly favors the use of the
CBM and RBC approaches with Riemann solver correction over
other methods.

B. Two-Dimensional Examples

In the one-dimensional test cases considered in the preceding
section, the shocks interacted with interfaces to produce regular
reflections.Multidimensional shock diffraction patterns can be irreg-
ular (consisting of a Mach stem, slip lines emanating from a Mach
stem, and eventual roll up of slip lines due to baroclinic vorticity
generation, etc.). In this section, a series of multidimensional test

Fig. 10 Comparison of the primary shock detachment distance over time between CBM and RBC–RS.

2930 SAMBASIVAN AND UDAYKUMAR



Fig. 11 Numerical Schlieren image at different instants in time.
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cases are presented to illustrate the performance of the GFM-based
approaches in such situations.

1. Shock Diffraction Over Wedge

The first two-dimensional test case considered in this work is the
diffraction of aMach 1.3 shock wave past a wedge. The details of the
initial configuration of the problem can be found in Sivier et al. [47].
This problem has received considerable attention in the past, and

extensive numerical and experimental documentations are available
for comparison [47]. Snapshots of the numerical Schlieren image, at
different instants in time, obtained from using both the RBC–RS and
the CBM approaches are displayed in Fig. 9. Although the contour
plots generated using the two approaches look very similar, there are
subtle differences that are worth noting. As mentioned in Sivier et al.
[47], the planar shock (upon impacting the wedge) forms a cylin-
drical reflected bow shock centered at the wedge tip, with a Mach
stem attached to the wedge surface (Figs. 9a and 9b). All typical
features ofMach reflections are captured well by both (RBC–RS and
CBM) methods. However, both methods fail to capture the slip line
originating from the wedge surface, which is clearly visible in Sivier
et al. But in Sivier et al., an AMR technique was employed that
provides sufficient mesh enrichment to capture such fine details.
Figures 9c and 9d correspond to the instant when the incident shock
wave has passed over the wedge surface. As observed by Sivier
et al., the roll up of slip layers to form vortices that engulfed the ver-
tex of the entropy fan are clearly visible. At this instant, the opposite
shock systems from the symmetrical side of the wedge have crossed

Fig. 13 Snapshots of numerical Schlieren image for a Mach 3 shock interacting with multiple stationary cylinders at different instants in time.

Table 1 CPU time taken for one complete

(third-order) RK time iteration

Interface treatment methods CPU time ratio with
respect to RBC–RS

RBC with Riemann solver 1.0
CBM without subiterations 1.0483
CBM with five subiterations 1.2276
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and have begun to interact with those vortices. The expansion fan,
which is produced as a result of the diffraction of the Mach stem
around the corner [47] and which subsequently moves down the
wedge surface, is also visible in the figures. Figures 9e and 9h show
that the vortices had shifted to the right, downstream of the wedge.
The slip layer emanating from these vortices are now visible along
with a new triple point formed at the vortex center. All of these
features, typical of the shock diffraction phenomena past a wedge,
are consistent with other numerical results [47] and with experi-
mental observations [48].

Plots of the primary shock distance from the wedge surface are
shown in Fig. 10. Shown in the figure, in accordance with Sivier
et al. [47], are the horizontal shock detachment distance a of the
reflected bow shock from the foot of the wedge (Fig. 10a), the
vertical distance r from the tip of the wedge to the diffracting shock
(Fig. 10b), and the horizontal distance x between the tip of the
wedge and the incident shock (Fig. 10c). The plots show excellent
agreement between the two methods in determining the position of
the primary shocks and are consistent with the predictions made by
Sivier et al. [47].

2. Shock Diffraction Over a Circular Cylinder

AMach 2.81 planar shock wave negotiating a cylindrical obstacle
in a shock tube is considered. As pointed out by Bazhenova et al.
[49], the initial interaction of the planar shock with the cylinder is a
regular reflection, with the shock reflecting normally along the axis
of symmetry. The reflected shock begins traversing the cylinder
before transitioning to a Mach reflection. The Mach reflection
consists of the incident shock, the reflected shock, the Mach stem,
and the slipstream. Ripley et al. [50] pointed out that this curved
Mach stem traveled down the cylinder and interacts with the shock
system from the symmetrical part of the cylinder to form a wake.

Several papers documenting this phenomenon are available for
comparison [5,6,49–52].

Because of the symmetry of the problem, only one-half of the
problem was modeled using a symmetry condition at the bottom
wall. RBC for the top wall and the Neumann condition for the outlet
were imposed. At the inlet, a Dirichlet condition corresponding to a
Mach 2.81 shock was enforced. The semicircular obstacle with a
radius of 0.105 units was positioned at x� 0:5 and y� 0:0. The
simulations were performedwith 500 � 250mesh points in a 1 � 0:5
computational domain. The initial discontinuity was located at
x� 0:385 units so that the sharp discontinuity relaxes to a numerical
shock profile before impacting the obstacle.

Results from the current simulations are shown in Fig. 11.
Figures 11a and 11b show the curved Mach stem, with the reflected
and incident shock, just before interacting with the opposite shock
system. Both CBMandRBC–RS agreewell with each other and also
with the experimental results shown in Bazhenova et al. [49].
Figures 11c and 11d show the triple point and wake formed after the
shock interaction. The contact discontinuities, upper and lower triple
points, and the Mach systems are captured well. Although the
numerical Schlieren image, displayed in Fig. 11f, predicts a wider
wake for the CBM approach, there is no other discernible difference
between the results. Comparing Figs. 11e and 11f, it is clear that the
large scale features of the diffraction pattern, observed particularly in
thewakeregion,appearmoreprominent for theRBC–RSmethodthan
the CBM method. For a quantitative comparison between the two
methods, the bow shock detachment distance over time and the locus
of the upper triple point were tracked [49]. Figure 12 shows the plots
obtained fromthecurrent calculations.Figure12apredicts aparabolic
behavior for the shock detachment distance, which is consistent with
thenumerical resultsobtainedbyRipleyet al. [50].Theanglemadeby
the locus of the upper triple pointwith the horizontal (predicted by the
RBC–RS) is 31.3 deg, and that, obtained usingCBM, is 30.5 deg. The

Fig. 14 Numerical Schlieren image for a) RBC–RS and b) CBM, and c) locus of center of mass for a cylinder subject to Mach 3 shock.
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correlation obtained fromexperimental observations [50,53] predicts
an angle of 33 deg, which is in close agreement with the current
numerical calculation.

3. Shock Diffraction Over Multiple Cylinders

This test case is considered to demonstrate the ability of the inter-
face treatment methods to handle multiple embedded objects. This
example is similar to the previous one except that, in this case, there
are three asymmetrically placed cylindrical obstacles in the path of a
planar shock wave. The cylinders of radius 0.1 units were placed at
(0.3, 0.3), (0.35, 0.7), and (0.5, 0.1) in a 1 � 1 computational domain
with 500 mesh points in each direction. A Mach 3 planar shock was
initially positioned at x� 0:19. The results obtained from the current
simulations are shown in Fig. 13. Table 1 shows a comparison of
CPU time taken by the two methods for one complete time step.
Because the simulations were carried out on a fine mesh, and due to
the presence of multiple embedded objects, the CPU time for this
example is a good representation of typical computation time for the
problems attempted in the present work. Note that the transformation
matrix computed in obtaining the compatibility relation is a function
of time, and when subject to strong transient shocks, the inherent
linearization process assumed in obtaining the characteristic equa-
tions does not hold true [15]. As pointed out byNourgaliev et al. [15],
these errors can be minimized by employing subiterations (i.e., by
advancing in a series of small time steps for each RK time iteration).
Although the CPU times taken by CBM without subiterations and
RBC–RS are comparable, the CBMmethod with subiterations takes
a larger amount of CPU time to converge. Therefore, the CBM and
RBC–RS methods are comparable in terms of computational time.
The choice of RBC–RS is, however, attractive due to the relative
simplicity of implementation of the approach, because one can
operate in the primitive variable Cartesian formulation. Despite the
simplicity of the formulation and implementation of the RBC–RS
approach, the results produced by these two methods are in good
agreement.

4. Dynamics of a Cylinder Subject to Mach 3 Shock

The first two-dimensional moving boundary problem demon-
strated in this work is the dynamics of a cylindrical object subject to a
Mach 3 shock. This problem was considered by Falcovitz et al. [54]
and later by several others [31,55]. The problem consists of aMach 3
shock impacting a cylindrical object that is initially at rest and
located at the bottom of the domain. The subsequent motion of the
cylinder results in the cylinder lifting off the lower surface. The
motion of the cylinder is computed by integrating the fluid forces
acting on the cylinder at each instant. The numerical Schlieren image
from the current calculations are displayed in Figs. 14a and 14b. The
locus of the center of mass of the cylinder is shown in Fig. 14c for
comparison. Thus, it is clear, from Fig. 14c, that the numerical pre-
dictions of the position of the cylinder made by the two approaches
are in excellent agreement with each other. Furthermore, the
numerical Schlieren image, displayed in Figs. 14a and 14b, closely
follows the trend observed by Forrer and Berger [55].

Thus, despite a few subtle differences, it can be inferred from the
numerical examples shown previously that there are no significant
discrepancies in the numerical results obtained using CBM and
RBC–RS methods. Considering the relative ease of implementation
and speed of computation, the RBC–RS method is preferred over
the CBM method. In the following examples, the robustness and
versatility of the RBC–RS approach are demonstrated for shocks of
different strengths interacting with embedded (stationary and
moving) objects of complex shapes and orientations.

5. Mach 3 Shock Interacting with Multiple (120) Stationary Objects

A Mach 3 shock wave interacting with randomly oriented
stationary obstacles is considered. The problem consists of
120 arbitrarily oriented and randomly positioned elliptical and
cylindrical obstacles in a 25 � 6 computational domain. Although
the coordinates of the center of mass of the particles were generated

randomly, care was taken in placing the particles particularly on the
bottom boundary to depict a symmetrical problem of 60 particles that
are distributed randomly in the x direction. These stationary
particles, which are immersed in quiescent air, were subject to a
Mach 3 shock. As seen from Fig. 15, the shock after negotiating
through these (fixed) obstacles develops a complex diffraction
pattern, in addition to the reflected and the transmitted shock waves
that emerge from the diffraction pattern. This example demonstrates
the potential of the present method for the application to state of the
art direct numerical simulations of a shock wave traversing through
a porous medium or a dusty gas [56,57].

6. Mach 8 Spherical Shock Interacting with Multiple (24)

Moving Objects

The second example considered in this section is an explosion
corresponding to a Mach 8 cylindrical shock in the presence of 24
symmetrically positioned particles that are free to move under the
influenceoftheshockwave.Again,duetothesymmetryoftheproblem,
only one quadrant of the problem was modeled. As in the example

Fig. 15 Series of numerical Schlieren images for a Mach 3 shock

traversing through 120 randomly oriented stationary particles.
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considered in Sec. IV.B.4, the velocity of the center of mass of the
particles is obtained from a simple force balance. The external fluid
force acting on the particles was computed by integrating the pressure
force around each particle. The density and size of the particles were
(randomly) chosen so that the collisions between themoving particles
andwiththedomainboundarieswereaverted.Hence,collisionmodels,
such as in Nourgaliev et al. [58], in the presence of shocks were not
included in this calculation. Figure 16 shows a series of numerical
Schlieren imagesfor thissimulation.The initialcylindricalshock,upon
interacting with the particles, disperses the particles from their initial
positions.Thecylindricalshockfront,after reflectingoff thewallsof the
domain, interacts again but now in the opposite direction to themotion
of the particles, thereby slowing the particles.

V. Conclusions

The issue of treatment of a solid–fluid interface interacting with
strong shock waves was studied. Several approaches for numerical
treatment of such interactions were considered and evaluated for a
range of test problems. A Riemann-solver-based GFM approach
formulated to resolve the interface dynamics for embedded fluid–
fluid interfaces [23] was extended in conjunction with the RBC to
treat the presence of solid objects in compressible flows. It was
shown in the numerical examples that this method was robust and
accurate, and it significantly reduced (but did not entirely eliminate)
the over/underheating errors at the material interface. Both the CBM
method and the RBC–RS approaches were found to be consistent in
generating satisfactory solutions for several complex configurations
and shock diffraction phenomena, and they significantly reduced
the shock interaction errors. However, the associated complexity
involved in carrying out the characteristic decomposition and the
wave analysis in the characteristic space at the interface rendered the

CBM approach less attractive than the RBC–RS approach. Shocks
interacting with multiple particles and complex shapes have also
been computed. The method is currently being applied to study the
dynamics of dense particulate compressible flows.
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